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1 MODELS OF THE THERMAL PROCESSES (ASONIKA-T and 

ASONIKA-TM) 

 

By exploiting the electro-thermal analogy (ETA), the thermal processes 

occurring in the electronic assemblies can be represented in the form of an 

equivalent electric circuit. This circuit can then be analyzed by means of the well-

developed numerical techniques for electric circuits. Mathematically, it is done by 

replacing the partial differential equations with the finite-difference equations. 

Consider the following steady-state Fourier-Kirchhoff differential equation 

describing the heat transfer in a solid isotropic body 

                                                02  VqТ ,                                         (1.1) 

where λ – thermal conductivity, qV – power density of the internal energy sources, 

Т – temperature, 2
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Assuming that continuous processes can be replaced with discrete processes, 

equation (1.1) can be written in the finite-difference form as follows 
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Figure 1.1  Discretization of a solid body into elementary volumes (а), and a set of 

such volumes along the x-axis (б). 
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Figure 1.1a shows a solid body discretized into elementary volumes of 

dimensions Δx, Δy, Δz. Consider a set of elementary volumes along the x-axis 

consisting of the volume V0 and the two adjacent volumes V1, V2, as shown in 

figure 1.1б. Denote the temperatures at the center of each volume Т0, Т1, Т2 

(assume that the volumes are isothermal). 

Volume V0 contains internal energy sources with the power density q0. 

Then, for the volume V0, the x component of the Laplacian in (1.2) can be 

written as (using the forward difference): 
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Similarly, considering the elementary volumes along y- and z-axis (figure 

1.2), the remaining y and z components of the Laplacian in (1.2) are: 

 
Figure 1.2 Two sets of the elementary volumes along the y- and z-axes. 
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Using (1.3), (1.4) and (1.5), equation (1.2) becomes: 
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Multiplying both sides of (1.6) by the volume V0= Δx · Δy · Δz, we get 
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where Q0=q0 ·Δx · Δy · Δz – thermal power dissipated in the volume V0. 

Define: 
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These quantities have the units of (W/K) and represent thermal conductances 

between adjacent volumes in the x-, y-, and z-directions, respectively. Thus, 

equation (1.7) becomes: 

                        40032001 TTGTTGTTGTTG yyxx  

                006005  QTTGTTG zz                                             (1.8) 
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Figure 1.3 Equivalent electrical circuit representing the steady-state heat transfer in 

the elementary volume V0. 

 

The finite-difference equation (1.8) describes heat transfer in the elementary  

volume V0. Figure 1.3 shows the electric circuit analog of equation (1.8) based on 

the Kirchhoff’s first law for the sum of currents at the 0-th node. 

 

Boundary conditions 

Let’s consider now a boundary volume along x-axis (volume V1 in figure 

1.4). As can be seen in the figure, this elementary volume is located outside the 

solid body; it is located in the environment surrounding the body. Step Δх outside 

the solid body is introduced artificially. 

 

 
Figure 1.4 Boundary elementary volume V1.  
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Equation (1.6) for the boundary volume V1 has the following form:    
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where λГ is not the thermal conductivity of the isotropic body but the conductivity 

of the interval which includes the boundary between the body and the surrounding 

medium. 

In the experimental analysis of the heat-conducting properties of an 

interface, when trying to determine the law of heat-exchange between the surface 

of the body and the environment, the quantity known as the heat transfer 

coefficient is determined, α = λГ/Δх. Various boundary conditions can be specified 

at the body-environment interface. 

The boundary condition of the first kind specifies the temperature of the 

surface (Тп)  as a function of position and time: 

                                      Тп=f(xп, yп, zп, τ)                                                (1.10) 

where xп, yп, zп - coordinates, τ - time (for steady-state τ is excluded). 

The boundary conditions of the first kind cannot be specified during the 

design stage because the design is not yet implemented and the temperatures of the 

boundary surfaces are not yet experimentally determined. 

The boundary condition of the second kind specifies the density of the heat 

flow through the surface as a function of position and time: 

                                      qп=f(xп, yп, zп, τ)                                                (1.11) 

Such boundary conditions occur on the boundaries between the components 

of the electronic assembly and the surrounding air. 

The heat flux density qп can be described by the Newton’s law of cooling 

with the heat transfer coefficient α: 

qп= α · (Тп – Тср) 
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If equation (1.9) is manipulated the same way as equation (1.6), we obtain 

                       40032001
' TTGTTGTTGTTG yyxx  

               006005  QTTGTTG zz ,                                          (1.12) 

where G
’
x= α · Δy · Δz - thermal conductance of the surface in contact with the 

surrounding medium. 

Figure 1.5 shows the electric circuit analog of equation (1.5) based on the 

Kirchhoff’s first law for the sum of currents at a node (in the figure, node 1 

represent surface of the body). 

 

 
Figure 1.5 Equivalent electrical circuit representing the heat transfer in the 

boundary elementary volume with the specified boundary conditions of the second 

kind. 

 

The boundary condition of the third kind specifies the ambient temperature 

and the law of heat-exchange between the surface of the body and the 

environment. Such boundary conditions occur on the boundaries between the 

surface of the elements and the surrounding medium. For the boundary condition 

of the third kind, equation (1.12) has the following form: 

                      4003200
' TTGTTGTTGTTG yyxсрx  

              006005  QTTGTTG zz                                             (1.13) 
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The difference between (1.13) and (1.12) is that the temperature Т1 is known 

and equal to Тср. Figure 1.6 shows the electric circuit analog of equation (1.13) 

based on the Kirchhoff’s first law for the sum of currents at a node. 

 
Figure 1.6 - Equivalent electrical circuit representing the heat transfer in the 

boundary elementary volume with the specified boundary condition of the third 

kind. 

 

Boundary condition of the fourth kind specifies the temperature or its 

gradient at the boundary between the two media. Such boundary conditions occur 

on the boundaries between two media with different conductivities. For example, 

the boundary between a semiconductor component and a heat sink, transformer 

and packaging, two connected components of the assembly, etc. 

 
Figure 1.7 Boundary between of two solid bodies with different conductivities. 

 

Consider the boundary between two solid bodies with different 

conductivities (figure 1.7). Equation (1.6) for such a boundary element has the 

following form:  
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where λ0 Г1 is the conductivity of the interval which includes the body with 

conductivity λ1, body with conductivity λ2, and the boundary between them. 

 
Figure 1.8 - Equivalent electrical circuit representing the heat transfer in the 

elementary volume located at the boundary between two solid bodies where the 

boundary conditions of the fourth kind is specified. 

 

If equation (1.14) is manipulated the same way as equation (1.6), we obtain 

                       40032001
'' TTGTTGTTGTTG yyxx  

               006005  QTTGTTG zz ,                                          (1.15) 

where 
x

zy
G Г

x



 0'' 

 - thermal conductance between two solid bodies. 

Figure 1.8 shows the electric circuit analog of equation (1.15) based on the 

Kirchhoff’s first law for the sum of currents at a node. 

If the thermal contact between two solid bodies is assumed to be perfect, the 

temperatures of the boundary volumes is taken to be equal, i.e. Т1=Т0.  
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Equation (1.15) becomes: 

                 400320 TTGTTGTTG yyx  

               006005  QTTGTTG zz                                            (1.16) 

Figure 1.9 shows the electric circuit analog of equation (1.16) based on the 

Kirchhoff’s first law for the sum of currents at a node. 

 
Figure 1.9 - Equivalent electrical circuit representing the heat transfer in the 

elementary volume located at the boundary between two solid bodies with perfect 

thermal contact. 

 

Thus, the heat transfer in a solid body with boundary conditions of any kind 

can be modeled by the equivalent electrical circuit. 

Using these elementary heat transfer models with appropriate specified 

boundary conditions, the electro-thermal analogy can be extended to model 

thermal processes in the electronic assembly. The models of thermal processes 

(MTP) are based on the following analogies: voltage at a node of an equivalent 

electric circuit is equivalent to the temperature at that node, electric conductivity - 

thermal conductivity, electric current – thermal flow, current source directed into 

the node – heat capacity rate, current source directed out of the node – heat 

absorption capacity, voltage source – specified temperature of the corresponding 

part of the electronic assembly. 
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Following this approach, the electronic assembly is subdivided into volumes 

which are small enough to be considered isothermal. Representation of the 

assembly by a set of thermal conductances between such volumes, results in a 

large scale equivalent electric circuit. This circuit can be analyzed on a computer 

using the methods of electric circuit analysis. 

When solving non-steady-state problems, the equivalent electric circuits will 

also include capacitors which represent thermal capacities of the corresponding 

elementary volumes. Equation (1.1) for the non-steady-state heat transfer has the 

following form (the last term explains the presence of capacitors): 

                                    02 



d

dT
СqТ рV                            (1.17) 

where Ср – specific heat capacity, J/(kg·К); ρ – material density kg/m
3
. 

After the manipulations similar to (1-6) – (1.8), we can obtain: 

                      40032001 TTGTTGTTGTTG yyxx  
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d

dT
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
                            (1.18) 

where С0 – heat capacity of volume V0. 

Figure 1.10 shows the electric circuit analog of equation (1.18) 

 
Figure 1.10 - Equivalent electrical circuit representing the non-steady-state heat 

transfer in the elementary volume V0. 
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In the non-steady-state heat transfer analysis, initial conditions should be 

specified in addition to the boundary conditions. Initial condition specifies the 

temperature distribution at the initial time τ0 

Т=f(x, y, z, τ) 

This function is defined for some time interval Δτ, during which the thermal 

processes are being analyzed. To facilitate the analysis of the thermal processes in 

the electronic assemblies, it is convenient to form a topological representation of 

thermal models. 

Topological model is a model represented in the form of an undirected 

graph. In the MTP, vertices (nodes) of such a graph represent structural elements 

and components of the electronic assembly (heated zones). Branches (edges) 

represent thermal flow. Nodal variables are computed temperatures (Тi), variables 

of the branches – heat flux (Ψij), and parameters of the branches – thermal 

conductance (Хij). In general, two types of branches can be identified in the non-

steady-state heat flow analysis: 1-st type – dissipative branches where the values or 

analytical expressions of the thermal conductance (Xij) are known; 2-nd type – 

conservative branches where the values or analytical expressions of the heat 

capacity (Cij) are known. 

Unlike in other models, in topological thermal models boundary conditions 

of any kind and combination can be easily specified with the help of the 

corresponding components of the graph (branches, specified temperature sources 

and/or sources with specified thermal power). Other advantages of the topological 

model are: relatively simple transition to other mathematical models; the ability to 

use general methods for formulating and solving mathematical models, including 

the theory of sensitivity. 

A topological model of the thermal processes (MTP) in an element can be 

divided into two parts: 
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1. Parts which describe thermal processes in the element without taking 

cooling into account (boundary conditions).  

2. Parts which take cooling into account. 

Parts of the MTP of the first type represent thermal models of the structural 

components (printed electronic parts, function cells, electronic parts without 

packaging). These models can be easily obtained by using the finite-difference 

approximations of the heat transfer equation. It should be noted that such approach 

makes it possible to form parts of the MTP with different level of detail. Such parts 

can be used in different stages of the design, using hierarchical approach. When 

analytical model are used, computation of the parameters of the MTP is based on 

the geometrical and thermo-physical parameters of the structure; therefore, any 

feature of the structure can be taken in to account. 

Parts of the MTP of the second type represent boundary conditions of the 1-

4 kind and their combinations. They are expressed through geometrical and 

thermo-physical parameters of the structure and thermo-physical parameters of the 

surrounding environment. 

Among various thermal processes occurring in the elements, simple forms of 

heat-exchange can be identified and used to construct topological models of the 

thermal processes (MTP). For clarity of representation, graphic images of the 

topological branches can be introduced with original designations assigned to the 

components of the graphs. 
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2 MODELS OF THE MECHANICAL PROCESSES (ASONIKA-TM) 

 

2.1 Models of the mechanical processes based on the finite difference 

method 

 

There are many ways to assemble various electronic components. Some 

assemblies, however, can be identified as less efficient at protecting the terminals 

of the components against mechanical vibrations. Although any mechanical effect 

can cause time-varying loadings in the terminals, fatigue-failure is mainly caused 

by the long-term cyclic loadings such as harmonic and random vibrations, and 

acoustic noise. Comparing to these loadings, short-term loadings such as impact 

and linear acceleration do not contribute much to the fatigue accumulation. 

Therefore, it is necessary to develop models of the components subjected to 

vibrations and noise. 

To determine dynamic characteristics of an electronic assembly two 

problems have to be solved: the first one determines natural frequencies and forms 

of vibrations of the structure, and the second determines the amplitudes of the 

forced oscillations of the components at different locations in the assembly under  

specified external vibration (load). It is then possible to determine mechanical 

loadings and strength tolerances of the structure and assess the probability of  non-

failure under vibration. 

In practice, the applicability of the analytical methods for solving such 

problems is very limited. Modern electronic assemblies represent complex 

mechanical systems with numerous elastic and rigid connections. In addition, 

various elements of such a system are often joined together in a fashion that is not 

standard for structural mechanics. Moreover, elements of the assembly are often 

mechanical structures themselves, which can resonate and, therefore, significantly 

increase mechanical loadings. It is difficult to create an analytical model which is 

simple and, at the same time, sufficiently accurate to represent physical and 

dynamic properties of such a mechanical system. A number of mathematical 
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difficulties usually arise when trying to establish and solve the equations of motion 

of such a structure. 

Therefore, dynamic properties of the electronic assemblies are usually on a 

computer using numerical methods. The Finite Element Method is one of the most 

effective methods for solving problems which involve complex practical 

structures. Over the years it became one of the most popular and wide-spread 

techniques. Nowadays, there exist many software packages based on the Finite 

Element Method. Among them, ANSYS is one of the most versatile. Advanced 

programming algorithms of this package allow significant automation of the 

process of the component design and their discretization into finite elements. 

The analysis of vibrations in electronic circuit boards is often based on the 

Kirchhoff–Love theory of plates. The assumption made in this theory is the 

following: all straight lines normal to the mid-surface of the plate remain straight 

and normal to the mid-surface after deformation. Thus, the coordinate along the 

thickness of the plate can be excluded from the model. 

The form of the equation describing forced oscillations in a printed board 

assembly (PBA) depends on the accepted hypothesis about the internal damping 

force. If these force is assumed to be proportional to the deformation, then the 

equation of motion is 

                    ),,(
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where z  - vertical displacement (bending) of the printed circuit board at the point 

with coordinates x, y and time t; 0m  - mass of the PCB per unit area S ; 

)),1(12/( 21
3

11  hED  ))1(12/( 21
3

22  hED  - cylindrical stiffness long x- and 

y-axis, respectively;  DDD k2213  DD k212   - stiffness; 

12/3hGD k   - complex rotational stiffness; ))1(2/( 4545  EG  - complex 

shear modulus; h – thickness of the PCB; E1 , 2E , 45E  - complex modulus of 

elasticity along x and y directions and at an angle of 45
0
, where 
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)/1(  jEE ii  

where i=1,2,45;   - logarithmic decrement of damping; 4521 ,,   - Poisson 

coefficients of the material along x and y directions and at an angle of 45, 

respectively (x and y axis coincide with the sides of the PCB);  tyxP ,, - external 

force per unit area causing oscillations. 

To use this equation for modeling mechanical processes in a PBA subjected 

to vibrations, impacts, linear accelerations and acoustic noise, the following two 

criteria should be satisfied. 

The first criterion (Petrashen criterion) is: 

1hG , 

where   - angular frequency of oscillations;   - material density. 

Let’s substituting the values of hG,,,  for the printed circuit board made 

of the epoxy glass laminate sheet. The values which maximize the left-hand side 

are: ,20002 Hz   ,2050 3mkg  ,*93,6 29
10 mNG   mh 3102  . 

Then, the left-hand side is equal to 0.013<<1. 

The second criterion (Ross criterion) is: 

113
222 




   Eh . 

Using the same values for h,, , and 2101069.1 mNE  , 22,0 , the 

left-hand side is equal to 11068.2 5   .  

Thus, equation (2.1) can be used to model the mechanical processes in the 

PBA for all types of mechanical effects, whose spectrum lies within 2000 Hz. The 

following sections present models based on (2.1) which describe PBAs subjected 

to harmonic and random vibrations, impact, linear acceleration and acoustic noise. 

Both, analytical and finite-difference models will be considered. The former are 

used for the assemblies with uniform arrangement of the components whereas the 

latter are used for the arbitrary arrangement. 
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2.2 Models with harmonic vibrations 

 Let’s employ the finite-difference method to solve equation (2.1). To 

transform (2.1) to the frequency domain, assume that the unknown variable, 

vertical displacement (bending) z  of the PCB at a point i with coordinates (x,y) 

and time t, can be written as: 

                                                  ezz tj
i

t
i

)(                                                 (2.2) 

where z i – amplitude of the vertical displacement at point i. 

Figure 2.1 shows sketch of a PBA with the superimposed uniform 

rectangular grid. The step size of the grid along x and y directions can be different. 

Figure 2.2 shows numbering of the nodes surrounding some node i.  

For better accuracy, the special derivatives will be approximated using 

central difference. Thus, the partial derivatives in (2.1) can be replaced with the 

following approximate finite-difference expressions: 
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           (2.3) 

where a and b – step-size along x- and y-axis as shown in figure 2.1; zz 121
,...,  - 

vertical displacements of the PCB from the equilibrium at the points 1,…,12, 

located around node i as shown in figure 2.2. 
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Figure 2.1 Sketch of a printed circuit board with superimposed grid. 

 

 

Figure 2.2 Topological model of a PCB subjected to harmonic vibration.  

The model also takes into account temperature. 
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In general, external force per unit area causing oscillations at any point i and 

time t can be written as: 

                       ./)')('1('),,(  
0 abezzjktyxP tj

i
                               (2.4) 

 Substitute (2.2) - (2.4) in (2.1). After grouping terms with the same 

displacement, we get: 
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where im  - mass of the i-th node per unit area.  

 Since the grid in figure 2.1 is uniform, the area of each rectangle is ab . 

Therefore, after multiplying (2.5) by ab, the mass per unit area in the last term 

becomes the mass of such a rectangle. Divide (2.5) by j , substitute the following 

expression for stiffness 

 ,1 jDD ll
   ,3,2,1l  

and separate conservative and dissipative parameters. After these manipulations, 

(2.1) can be written in generalized notation: 

                       eieiioiir hhh
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where zzz errii

'

0
,,    - nodal variables in the topological model of the 

PCB (e  - nodes where PCB supports are connected to the base);  
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conductance of the branches in the topological model. Note that for the internal 

nodes (located more than two nodes away from the edges): 
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where a  and b  - grid steps along x- and y-axis;  T
'

 - mechanical loss 

coefficient of the support material (constant, because support usually oscillates at 

frequencies far from resonance);  
'

k T  - rigidity of the PCB supports under 

tension. In this model, the temperature is taken into account thorough the 

temperature-dependent parameters - modulus of elasticity (cylindrical stiffness) 

and mechanical loss coefficient. In the topological mechanical model of the PCB, 

these dependences are represented by adjustable elements - resistors and inductors. 

For the nodes which are located on the edge, one node away from the edge,  

at the corner, and one node away from the corner, the branch conductances are:  

Node i is on the edge: 
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Node i is one node away from the edge: 
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Node i is on the edge and one node away from the corner: 
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Node i is not on the edge but one node away from the corner: 
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Node i is at the corner: 
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As can be seen from (2.6), any i -th node in the topological model should be 

connected to 12 surrounding nodes (see figure 2.2) and one common node 

(ground) with zero potential (in figure 2.2 this node is denoted as a solid thick 

line). Dashed lines in figure 2.2 represent branches in the topological model. 

Moreover, if the i-the node represents the PCB support, it should be connected to 

the e-th node. Figure 2.2 also shows electrical equivalent representation of the 

conservative (k ri, ) and dissipative ( ri, ) components. Each i-th node is 

connected to the common node by a branch with conservative parameter  0,i
. The 

right-hand side of equation (2.6) is zero for all nodes except the onces which are 

connected to the e-th node, that is PCB support. 

The mass and cylindrical stiffness of the discrete elements are taken into 

account the same way as in analytical model 

The finite difference expressions for stiffness at the internal i-th node are:  
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2.3 Models with random vibrations, impact, and linear acceleration 

When the arrangement of the components on the PCB is non-uniform, the 

analysis of the mechanical processes due to random vibrations can be performed 

using Monte-Carlo method. Let’s solve equation (2.1) in the time domain using the 

finite-difference method. The partial derivative in time can be written in the finite-

difference form as follows: 
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                           (2.10) 

where  1 nT  - discretization step in time; T  - total time during which the 

random process is active; n  - number of discretization points. 

The partial derivatives in space are replaced with the corresponding 

approximate expressions. Taking into account the discretization in time, let’s 

introduce two additional point to the already existing thirteen and, thus, get a 15-

point scheme.  Then, expression (2.10) becomes: 
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In general, arbitrary time-dependent external force per unit area exciting the 

oscillations at any point i on the PCB, can be written as 

                                   ,/)')('1('),,( 0 abzzjktyxP i                                   (2.12) 

where z
'
0  - instantaneous vibration displacement of the base. 

Since vibration acceleration is usually specified, vibration displacement is 

found by integrating the acceleration twice. This integration is done numerically 

because the acceleration can be a very complex function of time. 

After replace the partial derivatives in (2.1) with the corresponding finite-

difference expressions, substituting (2.11) and (2.12), and grouping terms with the 

same displacement, (2.1) can be written in generalized notation: 
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where  tz ii
 ,  tz rr
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 tz i  - 

nodal variables in the topological model of the PCB;  tz i ,  tz r  - vertical 

displacement (bending) of the PCB at the i-th and r-th nodes at time t;  tz
'
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 - 

displacement of the supports at time t;  
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14, mabk ii   

mi  - mass of the i-th node per unit area.  

Expression (2.13) contains artificially introduced frequency  . In the 

topological model, it represents frequency of the alternating current in the circuit.  

The time domain topological model of the PCB, which includes temperature, 

is almost identical to the model with harmonic vibration shown in figure 2.2. The 

difference is the addition of the branches (see figure 2.3) from nodes 13 and 14 and 

the exclusion of the branches connecting each i-th node to the common node. As a 

result, in the time domain models there exist 3 time layers; whereas, model in the 

frequency domain are discretized only in space coordinates. In addition, the 

parameters k i 13,  and k i 14, , as can be seen in figure 2.3, are independent of 

temperature. 

During the simulations, displacement is determined. The acceleration is 

found by taking the second time derivative of displacement. This differentiation is 

done numerically because the displacement can be a very complex function of 

time. 

Vibrations with multiple harmonics, impact and linear acceleration can be 

defined as a single instance of the random process. Therefore, models of the PCBs 

subjected to these loadings can be realized as the model of the PCB under random 

vibration based on the finite-difference method and described by expression (2.13). 
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Figure 2.3 Topological model of the printed circuit board subjected to random 

vibration. The model also takes into account temperature. 

 

2.4 Models with acoustic noise 

Acoustic noise is a stationary random process like “white noise”.  Therefore, 

the model with random vibrations can also be used to model acoustic noise in the 

range up to 2000 Hz. Several modifications, however, are necessary. The 

difference between the loading due to the acoustic noise and the loading due to the 

mechanical vibration is in the distributed nature of the force which depends not 

only on the intensity of the sound but also on the area of the device. Mechanical 

vibrations are mainly transferred to the device through the supports of the 

structure. Thus, taking into account the distributed nature of the acoustic noise 

loading, acoustic pressure can be written as: 
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where Q
a

k
 - uncorrelated normally distributed random variable whose variance  

defines the spectrum of the random function )(tx  and the standard deviation is the 

specified acoustic pressure. 

Since acoustic noise creates distributed loading on the surface of the PCB, 

expression (2.13) will be slightly different for the discrete model. The external 

force per unit area causing the oscillations can be written as: 
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At the points anchorage there also exist elastic force F y
 and friction Fтр

. 

Then, according to the D’Alembert’s principle, the force per unit area at the points 

anchorage is 
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Elastic force and friction can also be expressed similarly to (2.12) 
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where z
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0
 - absolute displacement due to the oscillation of the supporting structure 

(block). Then 
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After substituting these expressions in (2.1) and grouping term with the 

same displacement, equation (2.1) for the i-th node can be written (in time domain) 

in generalized notation: 
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Thus, unlike in model (2.13), each i-th node is connected to the common 

node by a branch with the current source I i  which has internal impedance zi  

(see figure 2.4а). For the nodes connected to the PCB support, the topological 

model is shown in figure 2.4б. 

 

 

 
Figure 2.4 Topological model of the printed circuit board subjected to acoustic 

noise. The model also takes into account temperature. 

a – node without support; б – node with support 
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3 RELIABILITY MODELS (ASONIKA-B) 

The probability of no failure (reliability), with the exponential time-to-

failure dependence, is given by 

)exp()( ttR    

where the mean time-to-failure is  



1
1 T  

The failure rate for most components can be found using the following 

mathematical models: 


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n

i
iгсб

n

i
iб KилиK

1
..Э

1
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where )( .. гсбб   – initial (basic) failure rate of the component found 

experimentally by testing it for the non-failure operation, durability, residual life; 

 iK  – coefficients which modify the initial failure rate depending on various 

factor (modes and conditions of operation, as well as design, operational, and 

technological features of the elements); 

 n – number of factors. 

Correction coefficient iK  = kλ1 kλ2 kλ3 kλ4 kλ5  is always greater than one. It 

indicates that the number of failures can be much greater when the equipment is 

operated under real-world conditions than when it is operated in a laboratory. 

Coefficient kλ1 represents mechanical factors (vibrations, impact), kλ2 – 

environmental factors (temperature, humidity), kλ3 – operation in low atmospheric 

pressure, kλ4 - biological factors, kλ5 – effects of specific environments. Values of 

these coefficients can be found in the reference books. 

For some complex devices, the total failure rate is the sum of the 

independent failure rates of the constituent parts of the device (for example, 

rotating parts and the current coil in a motor). Mathematical model for the failure 

rate of such a device is given by: 
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where бj  – initial (basic) failure rate of the j-th constituent part; 

 m – number of the independent constituent parts; 

 ijK  – correction coefficient of the i-th factor for the j-th part; 

 jn  – number of factors for the j-th constituent part. 

The number of correction coefficients iK  and their mathematical models are 

defined for a given class of elements. For example, for resistors, the coefficient of 

the mode of operation is given by: 
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where: A , B , tN , G , SN , J , H  – constants of the model; 

 t –ambient temperature °С; 

         P  – operating power of the resistor, W; 

        НP  – nominal power of the resistor, W. 

Or, for example, for the integrated circuits, the correction coefficient ИИK  

takes into account the effect of the ionizing radiation. Its value depends on the dose 

of the ionizing radiation: 

dose 0-10 krad, 1ИИK ; 

dose 20 krad 035.1ИИK ; 

dose 40 krad 1.1ИИK . 

If the electronics equipment is kept in standby mode (storage) most of the 

time, with  periodic monitoring of its working condition, then the reliability can be 

computed with the following models for the failure rates ..ХЭ : 

For non-moving parts: 

пруслxtГСXпруслxtXб KKKorKKKK  ...Х. Э..Х. Э.   

For moving parts: 

прЭxtГСXпрЭxtXб KKKorKKKK  ...Х. Э..Х. Э.   
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where ГСX ..  – failure rate of the element when it is being stored in the original 

packaging; 

 б  – initial (basic) failure rate; 

 xtK .  – correction coefficient taking into account ambient temperature; 

 прK  – coefficient of product acceptance; 

 ЭK  – correction coefficient referred to as service factor; 

 услK  – correction coefficient taking into account the operating conditions in 

standby mode (storage). 

Non-failure operation of an electronic assembly depends on the failure rates 

of its constituents. The reliability )(tRC  of a non-redundant system with n 

components in series connection with the independent failure rates of the 

components (the system remains operational, if all components are intact) is: 
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where )(tRi  - probability of the non-failure operation of the i-th component. 
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where C  - failure rate of the system. 
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The reliability of a redundant system depends on the mode of operation of 

the duplicate components. 

The reliabilities if the systems with passive redundancy and active-active 

redundancy are described by the same mathematical expressions. If the switch 

which activates duplicate components is assumed to be instantaneous and 

completely reliable, then the probability of non-failure operation is 

   



m

i
i

m

i
iC ttRtR

11

)exp(11)(11)(   



 

 32 

where )(tRi  – reliability of the i-th device; m – number of devices in parallel 

connection (main + duplicate), i  – failure rate of the i-th device. 

The reliability of the system with active-active redundancy but when the 

backup components are only lightly loaded (assuming ideal switch) is: 

 
 


 















1

1 1

0
00 1

!

)exp(1
)exp()exp()(

m

j

j

i i

j
j

C i
j

t
tttR




  

    imi   01,1  

where 0  and i  – failure rates of the main active device and the i-th backup, 

respectively. 

The reliability of the system with the active-passive redundancy (assuming 

ideal switch) is: 
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The reliability of the system with the N+1 redundancy (N active devices and 

one backup in standby mode) is  

  )exp()exp(11)( 0
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where 0  and п  – failure rates of the active element and the switch, respectively. 

The durability of an electronic component depends on the time to fatigue-

failure of the component terminals and its residual life. Time to fatigue-failure 

under harmonic vibrations is given by: 

fNt /рр  , 

where pN  - number of cycles before failure; f – frequency of vibrations.  

The number of cycles to fatigue-failure under harmonic vibrations is given 

by:  
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where  0 - fatigue limit; m – parameter which depends on the material, size, and 

shape of the terminals; N B - basic number of cycles;  max  - maximum 

mechanical stress in the terminals.  

For the stationary random processes, the hypothesis of the superposition of 

the fatigue damage under cyclic loading is used. This hypothesis is based on the 

superposition of the energies of oscillations. Therefore, time to fatigue-failure of 

the component terminals under random loading can be found  
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where D  - standard deviation of stress; D  - variance; DSS /)()(0    - 

reduced spectral density; )(S  - spectral density; 








2

2+m
Г - gamma function; 

  - angular frequency of the harmonic loading )2( f  ; A  and m  - parameters 

of the fatigue curves where Аap 
m

N ; 2/)( minmax0    - stress 

amplitude in a cycle; min  - minimum mechanical stress in the terminals. 

To use the abovementioned formula for the computation of the time to 

fatigue-failure in the terminals of the components, it is first necessary to compute 

mechanical stresses in the terminals. Currently, this is done using the Finite 

Element Method. 

Parameter m represents the inclination angle of the fatigue curves. Figure 3.1 

shows two experimentally obtained fatigue curves, also known as Wohler curves. 

They describe the relationship between the stress amplitude and a number of  

cycles N р  to failure. Curve 1 is for steel of low and medium strength as well as 

titanium alloys without corrosion and at normal temperature, curve 2 – non-ferrous 

metals and high-strength alloyed steel. Curve 1 has a sharp bend at 10
6

р N  

cycles, after which it is almost parallel to the abscissa. Therefore, as a basis for 
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tests 10
7

B N  is usually assumed. Physically, it means that if the stress 

amplitude is less than 0 , no number of cycles will cause fatigue-failure. This 

value of stress is called the fatigue limit. Some materials, in particular non-ferrous 

metals, do not have a distinct fatigue limit: as the number of cycles N р  increases 

the strength continues to drop (curve 2). For such materials, fatigue is 

characterized by the finite life threshold (endurance threshold) for a given number 

of cycles N B , which is usually taken to be 5*10
7
 cycles. This fully applies to the  

terminals of electronic components because they are usually made of the non-

ferrous metals and their alloys.  

Figure 3.1 Fatigue curves for various materials 

 

Analysis of the thermal modes of electronic assemblies shows that the 

temperatures at the component terminals do not exceed 150С. Fatigue curves for 

non-ferrous metals and, consequently, parameter m , begin to change significantly 

at temperatures above 0,45 - 0,50 Tпл (Tпл – melting point of metal) which, for 

example, for copper is about 500 С. For other non-ferrous metals and alloys, this 

temperature is either of the same order or exceeds it. Thus, the effect of 

temperature on the slope of the fatigue curves for the materials of the terminals can 

 



 

 35 

be neglected. However, temperature plays important role in the mechanical 

processes occurring in the components. The mechanical effects are transferred to 

the components through various packaging elements – cabinets, supports, blocks, 

PCA. Therefore, the effect of temperature on the mechanical processes in the 

electronic components is accounted for by including the effect of temperature on 

the supporting structure.  

An original method for determining the residual life of the components was 

developed. It allows us to take into account the fluctuations in the electrical 

characteristics of the circuits, ambient temperature, and the temperatures of the 

components.  

When computing the residual life of an element, the initial data are: structure 

of the electronics Q  (number of nodes N (blocks etc.), number of components in 

each node in ), failure rates of the elements λj. In this case, the residual life of each 

electronic component at time   is given by 

     jjt /1  

where )( j  - failure rate of the j-th electronic component at time , it is equal to: 
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where бj  — failure rate in laboratory conditions; )(kK  – correction coefficient 

of the k-th factor at time  , m – number of factors. 

The residual life of the electronics after the operation time t is given by: 
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)()(   - failure rate of the electronics. 

 


